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Motivation

e Adversarial attacks against NLP systems are getting increasingly strong
o Recent attacks such as TextFooler [1] are able to cripple models
e NLP models are becoming increasingly prevalent in society

o Conversational chatbots for shopping, banking, and even medical advice
o Being able to fool or attack these models can have devastating consequences

e Defenses have not kept up with attacks
o Most focus on preventing a single class of attack



Motivation - Example

Friday , Stanford ( 47-15) Friday , Stanford ( 47-15)
blanked the Gamecocks 8-0 . thumped the Gamecocks 8-0 .

Stanford ( 46-15 ) has a team : Stanford ( 46-15 ) had a team

full of such players this season . full of such players this season .

Model correctly determines Model incorrectly determines
this 1s not a paraphrashing this 1s a paraphrasing!
e Dataset consists of two pairs of sentences

o Model needs to determine if they are paraphrases of each other

e Just by making the two substitutions highlighted in red, we can change the
classification the model outputs!




Robust Encodings (RobEn)

e The Robust Encodings (RobEn) [2] paper protected against typo attacks
o An adversary might change prediction by creating a typo in a word
m  Substituting in ated instead of ate in the following sentence:
e “The aunt ate the food” -> “The aunt ated the food”
m May change classification from NLP model
o  Solution: Cluster words that are typos of each other
m  Words in the same cluster receive the same GloVe encoding
e GloVe encoding [3] is the vectorized representation the NLP model sees
o Performed well against state of the art typo attacks
o Able to sit on top of any existing NLP model

e \We use RobEn as a base and add synonyms to the clustering process
o Desired goal: have a module to make any model robust against adversarial attacks



Work Performed

e \We extend the RobEn framework to generate clusters using synonyms
o Determine synonyms for each word using WordNet [4]
m Creates SynSets which consist of synonyms for any given word
e \We demonstrate the accuracy of 4 different models trained in this manner

o Each of the 4 models look at different ways of filtering what gets added to clusters
o Run TextFooler attack on all models to show post attack accuracy



Architecture Setup

e Ourinputs are sets of sentences X={X,,X,,....X}
o Correspond with labels Y={Y1,Y2,...,YN}

e Our model is a function g: Z->Y where Z is the encoding domain
o  We represent the encoding function as a: X->Z
o Usually use an embedding space like GloVe to represent Z
o Classification becomes y=g(a(X))
m Correctify=y.
m Shorthand for encodings each word of X using a
o Goal of the clustering algorithm: help alter a to provide robustness against synonym attacks



Algorithm

e Start with an graph that contains nodes for each of the words in our vocabulary
o No edges yet

e For each word in our vocabulary

o Generate the synonyms for the word using WordNet SynSets
o Add an undirected edge between the word and each of its synonyms

e If word W. and word Wj share an edge in the clustering graph
o Then a(Wi)=a(Wj)
o Words that share an edge will be mapped to the same embedding
m Can be suboptimal as large synonym chains can appear where two words will be clustered
together even though they themselves are not synonyms
m Agglomerative clustering technique presented in RobEn paper that helps alleviate this
e Computationally very expensive however



Example - Original Text

In midafternoon trading, the Nasdaq composite index was up 8.34,
or 0.5 percent, to 1,790.47



Example - Encoded RobEn + Synonyms

the the the, the nasdaq the index the the the, the 0.5 the, the the



Example - Synonyms

a midafternoon a, the nasdaq complexaaaa,a0.5a,toa



Example - Synonyms No StopWords

in midafternoon be, the nasdag complex be was up be, or 0.5 be, to be.



Experiments

e Evaluate using the MRPC dataset from GLUE [9]

e Ran experiment on 6 different models

Base BERT

RobEn model from original paper

Model that clustered all synonyms for each word from WordNet

Model that clustered top 3 synonyms for each word from WordNet

Model that clustered all synonyms for each word excluding stopwords from WordNet
Model that clustered top 3 synonyms for each word excluding stopwords from WordNet

e 2 tests performed for each model

o Base accuracy in non-adversarial setting
o Accuracy after running TextFooler attack

o O O O O O



Results

Model Normal Accuracy y / Tex
0.152

Base BERT 0.877
RobEn BERT 0.809 0.189
Synonym Encoded BERT 0735 0.6716

3 Synonym Encoded Bert 0.745 0.6985
Stopwords Filtered Synonym Encoded Bert 0.7525 0.6446
3 Stopwords Filtered Synonym Encoded Bert 0.7745 0.5980

e \We see that the original two models perform very poorly against the attack

o No synonym based defenses
e All new models achieve accuracy around 75% in a non-adversarial setting
o  Slightly lower than the RobEn model which is lower than the base BERT

e All new models are resistant to the TextFooler attack



Results - Continued

e Test dataset is unbalanced (70% of examples have label ‘True’)
o Can use confusion matrix to ensure that models are not exploiting dataset bias to perform well

e |ook at confusion matrix for the _ Predlcted Texe Predlcted False

top two models to evaluate T ahel Thia
o 3 Synonym Encoded BERT had bias Label False
m \ery few false predictions
o  Stopword Filtered Synonym Encoded BERT Confusion Matrix for 3 Synonym Encoded BERT
had less bias with a better distribution
m Lower accuracy but probably better _

ability to generalize to new input Label True S 22

Label False

Confusion Matrix for Stopword Filtered Synonym
Encoded BERT



Results - Discussion

e Models are able to resist the TextFooler attack
o Previous work has shown it can cripple models (such as the base BERT we see here)
o Limiting the generated clusters to only having a few synonyms per word and removing
stopwords all result in similar accuracies
o Removing stopwords from the clustering process results in a better distribution of false
positives and true negatives across the unbalanced dataset

e \We only looked at synonym based clustering here

o Clusters generated with both synonym and typo defense grow too large

o In the future, smarter clustering algorithms could lead to combining the two defenses
e Defense assumes that cluster information is available to adversary

o No attack can take advantage of this right now
o In the future, design an attack that takes into account the clustering information to fully test the
robustness of this defense



Conclusion

e RobEnN clustering defense can be extended to work on synonyms

o  With a better clustering algorithm, we could integrate both synonym and typo based defense
into one defense module
o Defense can sit on top of any NLP model that considers encoded sentences to output labels

e Results show that various flavors of this defense can achieve around 75%

accuracy in a non-adversarial setting
o Maintain high performance in the regular setting
o Accuracies from 60-70% when defending against TextFooler
m  Much higher than regular BERT model
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